DISCRETE MATHEMATICS GENERIC ELLECTIVE(GI1T2)

Miss Neha Assistant Professor DEPARMENT OF MCA

PATNA WOMENS'S COLLEGE

Meaning of Discrete

Discrete means something i.e.; <u>countable</u>, <u>independent</u>, <u>separated</u>

For example

Total number of students in class-(Particular Value)

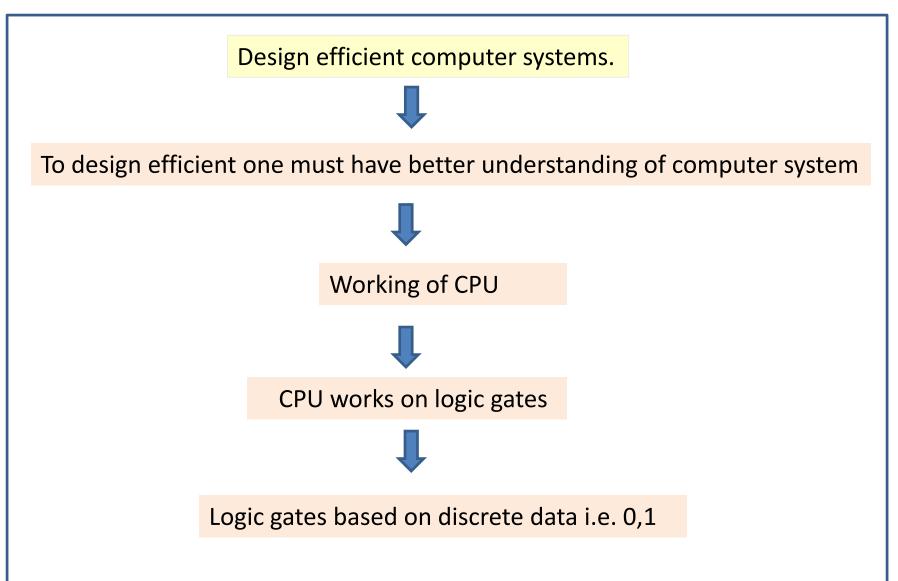
Height of students in class-(Continuous Value)

Definition

Discrete mathematics is a branch of mathematics which deals with discrete objects.

Discrete objects are those which are separated from (not connected to/distinct from) each other. automobiles, houses, people etc. are all discrete objects.

Why Discrete Mathematics?



Contents

1. Logic and Proofs How do computers think

Logic: Boolean Algebra

Proof: induction, contradiction

2. Counting How many steps are needed to sort n numbers?

- Sets, Combinations, Permutations, Binomial theorem,
- Pigeonhole principle, Recursions, Generating functions

3. Graph Theory Computer networks, circuit design, data structures

• Relations, Graphs, Degree sequence, Eulerian graphs, Trees

4. Number Theory

• Number sequence, Euclidean algorithm

Kind of problems solved by discrete mathematics

- How did Google manage to build a fast search engine?
- What is the foundation of internet security?
- How many ways are there to choose a computer password?
- What is the probability of winning a lottery?
- Is there a link between two users in a social network?
- What is the shortest path between two cities using a transportation system?
- How can a list of integers sorted in increasing order? How many steps are required to do such a sorting?

Problem Solving requires mathematical rigor

- Your boss is not going to ask you to solve
 - an MST (Minimal Spanning Tree) or
 - a TSP (Travelling Salesperson Problem)
- Rarely will you encounter a problem in an abstract setting
- However, he/she may ask you to build a model for the company's salesman to minimize the cost of travelling
- It is up to you to determine
 - a proper model for representing the problem and
 - a correct or efficient algorithm for solving it

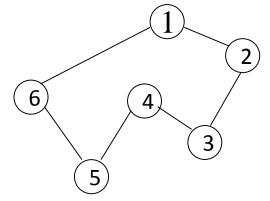
Examples of Graph Models: Traveling Salesman Problem

There are n cities. The salesman

- starts his tour from City 1,
- visits each of the cities exactly once,
- and returns to City 1.

For each pair of cities i, j there is a cost c_{ij} associated with traveling from City i to City j .

• Goal: Find a minimum-cost tour.



Situations where counting techniques are used

There are 4 jobs that should be processed on the same machine.

(Can't be processed simultaneously).

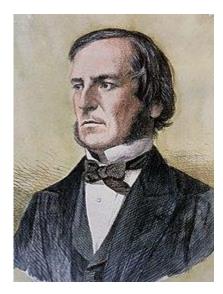
Here is an example of a possible schedule:

Job 3	Job 1	Job 4	Job 2
-------	-------	-------	-------

- Counting question: What is the number of all possible schedules?
- Optimization question: Find a schedule that minimizes the average completion time of the four jobs.

What's your job?

- Build a mathematical model for each scenario
- Develop an algorithm for solving each task
- Justify that your solutions work
 - Prove that your algorithms terminate. Termination
 - Prove that your algorithms find a solution when there is one. Completeness
 - Prove that the solution of your algorithms is correct Soundness
 - Prove that your algorithms find the best solution (i.e., maximize profit).
 Optimality (of the solution)
 - Prove that your algorithms finish before the end of life on earth. Efficiency, time & space complexity



Invented By: George Boole

Definition

- Boolean algebra is a mathematical system for the manipulation of variables that can have one of two values.
 - In formal logic, these values are "true" and "false."
 - In digital systems, these values are "on" and "off," 1 and 0, or "high" and "low."
- Boolean expressions are created by performing operations on Boolean variables.
 - Common Boolean operators include AND, OR, and NOT.

Operators

- Binary Operators -ANDz=1 if x=1 AND y=1 $z = x \bullet y = x y$ -ORz=1 if x=1 OR y=1z = x + y-NOTz = x = x'*z*=1 *if x*=0 Boolean Algebra
 - Binary Variables: only '0' and '1' values
 - Algebraic Manipulation

Operator Precedence

High

to

low

- Parentheses

 (...)
 NOT
 - x' + y
- AND

 $x + x \bullet y$

• OR

$$x [y + z \overline{(w + x)}]$$

$$(w + x)$$

$$\overline{(w + x)}$$

$$z \overline{(w + x)}$$

$$y + z \overline{(w + x)}$$

$$x [y + z \overline{(w + x)}]$$

Boolean Algebra Postulates

1.	Commutative Law	
2.	$x \bullet y = y \bullet x$ Identity Law	x + y = y + x
3.	$x \bullet 1 = x$ Complement Law	<i>x</i> + 0 = <i>x</i>
4.	$x \bullet x' = 0$ Associative Law	<i>x</i> + <i>x</i> ′ = 1
5.	$x(y \bullet z) = (x \bullet y) \bullet z$ Distributive Law	x+(y + z)=(x + y)+z
	$x \bullet (y + z) = x \bullet y + x \bullet z$	$x + y \bullet z = (x + y) \bullet (x + z)$

BASIC THEOREMS AND PROPERTIES OF BOOLEAN ALGEBRA

Boolean Algebra Theorems

• Duality Principal

- The duality principal states that every algebraic expression is deducible if operator and identity elements are interchanged.

<u>Example</u>

$$x \bullet (y + z) = (x \bullet y) + (x \bullet z)$$

 $x + (y \bullet z) = (x + y) \bullet (x + z)$

Boolean Algebra Theorems

• Theorem 1 Idempotent Law

$$- x \bullet x = x \qquad \qquad x + x = x$$

• Theorem 2 Dominance Law

$$- x \bullet 0 = 0 \qquad \qquad x + 1 = 1$$

• Theorem 3: Involution Law

$$-(x')' = x$$
 $(\overline{x}) = x$

• Theorem 4: *De Morgan's Law*
-
$$(x \bullet y)' = x' + y'$$

- $(x \bullet y) = \overline{x} + \overline{y}$
 $(x + y)' = x' \bullet \underline{y}'$
 $(x + y) = \overline{x} \bullet \overline{y}$

• Theorem 5: Absorption Law

$$- x \bullet (x + y) = x$$
 $x + (x \bullet y) = x$

Basic Theorems

Basic Theorems: proven by the postulates of table Theorem 1(a): x + x = x

$$x = x + 0$$

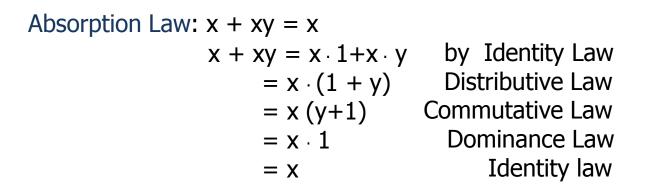
= x + x . x'
= (x + x).(x + x')
= (x + x) \cdot 1
= x + x

by Identity Law Complement's Law Distributive Law Identity Law

Theorem 1(b): $x \cdot x = x$ $x = x \cdot 1$ $= x \cdot (x + x')$ Co $= x \cdot x + x \cdot x'$ $= x \cdot x + 0$ Co $= x \cdot x$

by Identity Law Complement's Law Distributive Law Complement's Law Identity Law

Basic Theorems



 The theorems of Boolean algebra can be shown to hold true by means of truth tables.

√			•
x	У	x · y	x + x ⋅ y
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

First absorption theorem

Boolean Functions

 Boolean Expression also acts as a function which means its takes some input and mapped them to an output

Example:

$$F = x + y'z$$

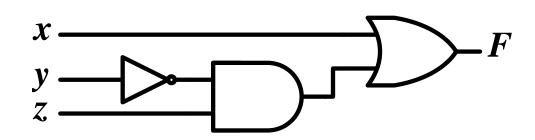
• Truth Table

A Boolean function can

be represented in a truth table.

the binary combinations for the truth table obtained by counting from $\underline{0}$ through $2^{n}-1$

• Logic Circuit



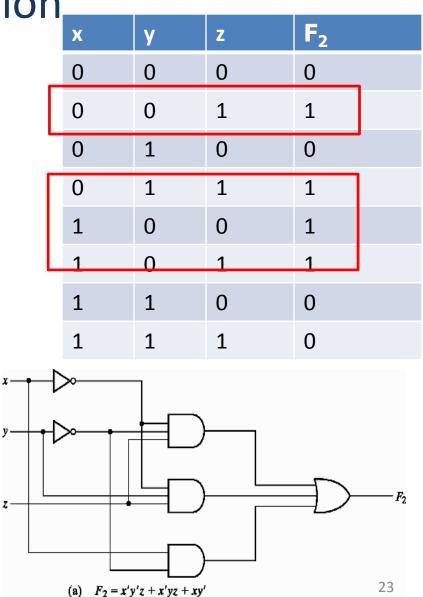
x	У	y'	Z	y'∙ z	F
0	0	1	0	0	0
0	0	1	1	1	1
0	1	0	0	0	0
0	1	0	1	0	0
1	0	1	0	0	1
1	0	1	1	1	1
1	1	0	0	0	1
1	1	0	1	0	1

Simplification of the algebraic

- A one way to represent Boolean function in a truth table.
- In algebraic form, it can be expressed in a variety of ways.
- By simplifying Boolean algebra, we can reduce the number of gates in the circuit and the number of inputs to the gate.

Before simplification of Boolean function

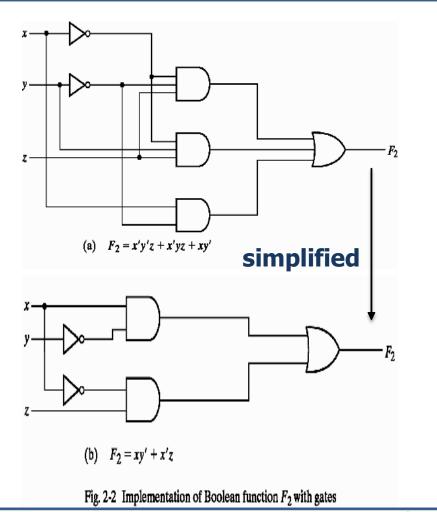
- Consider the following Boolean function: $F_2 = x'y'z + x'yz + xy'$
- This function with logic gates is shown in Fig. 2-2(a)
- The function is equal to 1 when xyz = 001 or 011 or when xyz = 10x.



After simplification of Boolean function

 Simplify the following Boolean function:
 F₂ = x'y'z + x'yz + xy' = x'z (y' + y) + xy' = x'z + xy'

 In 2-2 (b), would be preferable because it requires less wires and components.



Algebraic Manipulation

• Literal:

= (x

A single variable within a term that may be complemented or not.

 Use Boolean Algebra to simplify Boolean functions to produce simpler circuits *Example*: Simplify to a minimum number of literals

$$F = x + x' y$$
 (3 Literals)

$$= x + (x'y)$$

= $(x + x')(x + y)$
Distributive law (+ over •)

= (1)(x + y) = x + y (2 Literals)

- Boolean function expressed in **SOP** or **POS** from are said to be in canonical form.
- SOP (Sum of Product)

When Boolean function is expressed as a sum of minterms, its is called its sum of product expansion.

POS(Product of Sum)

When Boolean function is expressed as a product of maxterms, its is called its product of sum expansion.

• Minterm

- Product (AND function)
- Contains all variables in normal or complemented form.
- Evaluates to '1' for a specific combination

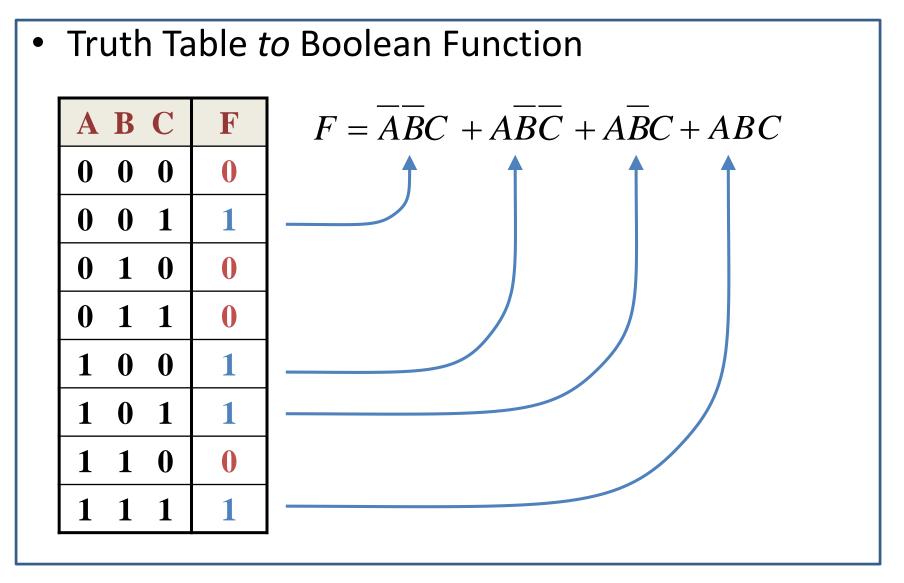
Example			
A = 1	A	В	С
<i>B</i> = 1	(1) •	(1)	• (1)
C = 1	Ļ	¥	Ļ
	1•	1 •	1 = 1

	A B C	Minterm
0	0 0 0	$\mathbf{m}_{0} \mid \overline{A} \overline{B} \overline{C}$
1	0 0 1	$\mathbf{m}_1 \overline{A} \overline{B} C$
2	0 1 0	$\mathbf{m}_2 \overline{A}B\overline{C}$
3	0 1 1	$\mathbf{m}_3 \overline{A} B C$
4	1 0 0	$\mathbf{m}_4 A \overline{B} \overline{C}$
5	1 0 1	$\mathbf{m}_{5} A \overline{B} C$
6	1 1 0	$\mathbf{m}_{6} AB\overline{C}$
7	1 1 1	m ₇ ABC

- Maxterm
 - Sum (OR function)
 - Contains all variables
 - Evaluates to '0' for a specific combination

Example

	A B C	Maxterm	
0	0 0 0	$\mathbf{M}_{0} A + B + C$	
1	0 0 1	$ \mathbf{M}_1 A + B + \overline{C} $	
2	0 1 0	$\mathbf{M}_2 A + \overline{B} + C $	
3	0 1 1	\mathbf{M}_{3} $A + \overline{B} + \overline{C}$	
4	1 0 0	$\mathbf{M}_4 = \overline{A} + B + C$	
5	1 0 1	\mathbf{M}_{5} $\overline{A} + B + \overline{C}$	
6	1 1 0	$ \mathbf{M}_{6} \overline{A} + \overline{B} + C$	
7	1 1 1	$\mathbf{M}_7 \overline{A} + \overline{B} + \overline{C}$	

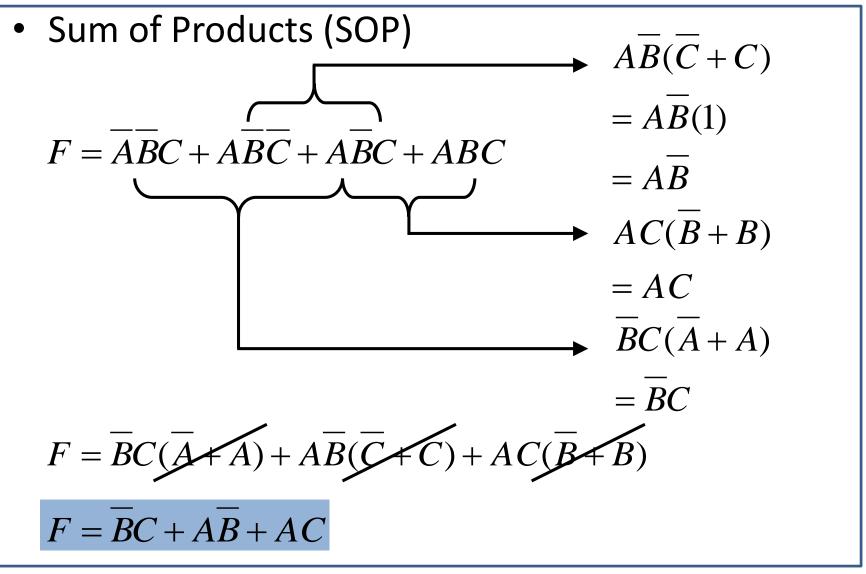


A B C • Sum of *Minterms* 0 0 F = ABC + ABC + ABC + ABC $F = m_1 + m_4 + m_5 + m_7$ 0 1 $F = \sum (1, 4, 5, 7)$ Product of Maxterms F = ABC + ABC + ABC + ABCF = ABC + ABC + ABC + ABC $F = ABC \cdot ABC \cdot ABC \cdot ABC$ F = (A + B + C)(A + B + C)(A + B + C)(A + B + C) M_{2} M_{3} $F = M_0$ M_{6} $F = \prod (0, 2, 3, 6)$

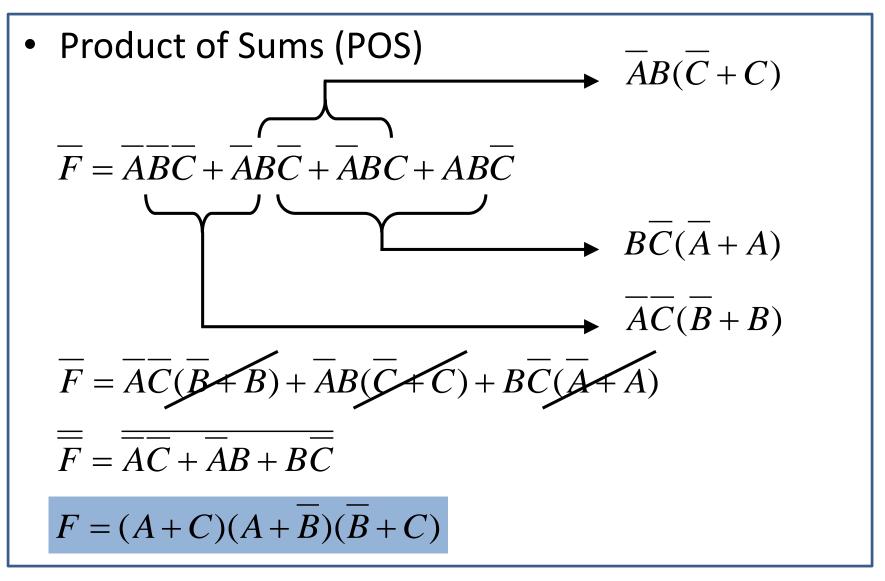
 $\overline{\mathbf{F}}$

F

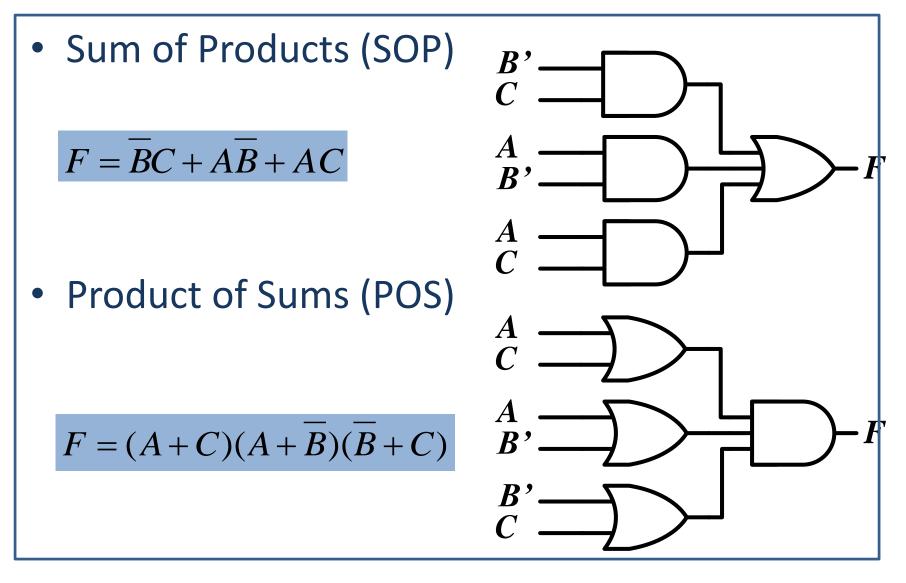
Standard Forms



Standard Forms



Two-Level Implementations



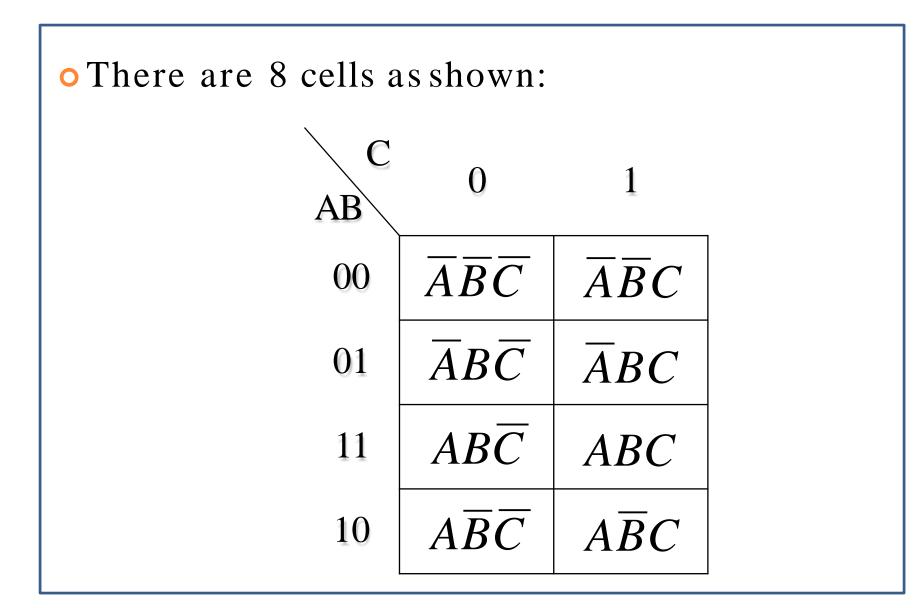
The Karnaugh Map

- Feel a little difficult using Boolean algebra laws, rules, and theorems to simplify logic?
- A K-map provides a systematic method for simplifying Boolean expressions and, if properly used, will produce the simplest SOP or POS expression possible, known as the <u>minimum expression</u>.

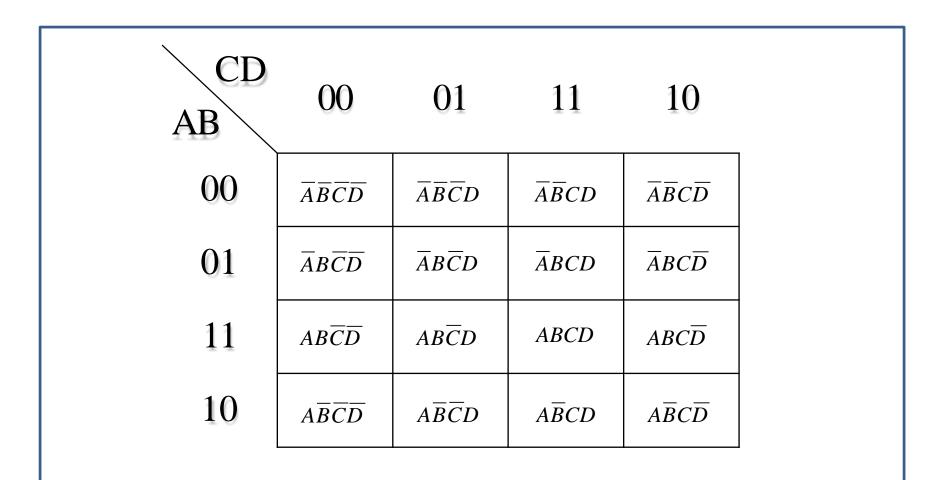
What Is K-map

- It's similar to truth table; instead of being organized (i/p and o/p) into columns and rows, the K-map is an array of cells in which each cell represents a binary value of the input variables.
- The cells are arranged in a way so that simplification of a given expression is simply a matter of properly grouping the cells.
- K-maps can be used for expressions with 2,
 3, 4, and 5 variables.

THE 3 VARIABLE K-MAP



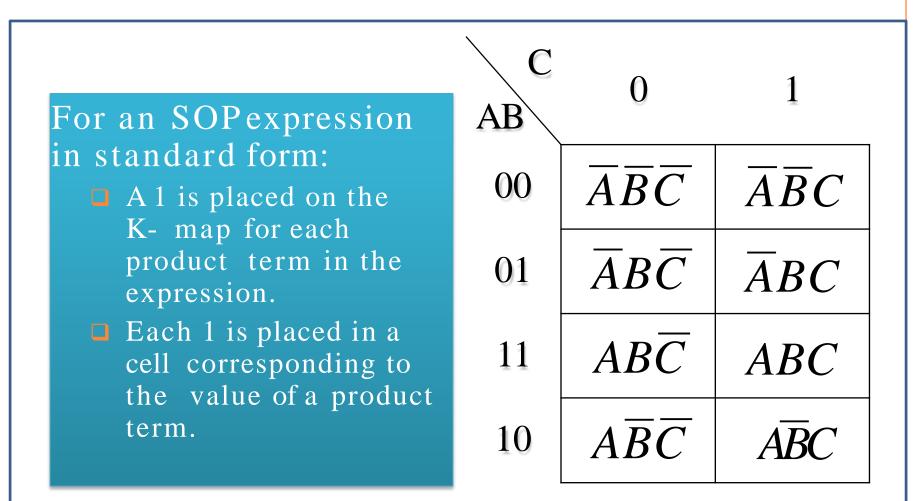
THE 4-VARIABLE K-MAP



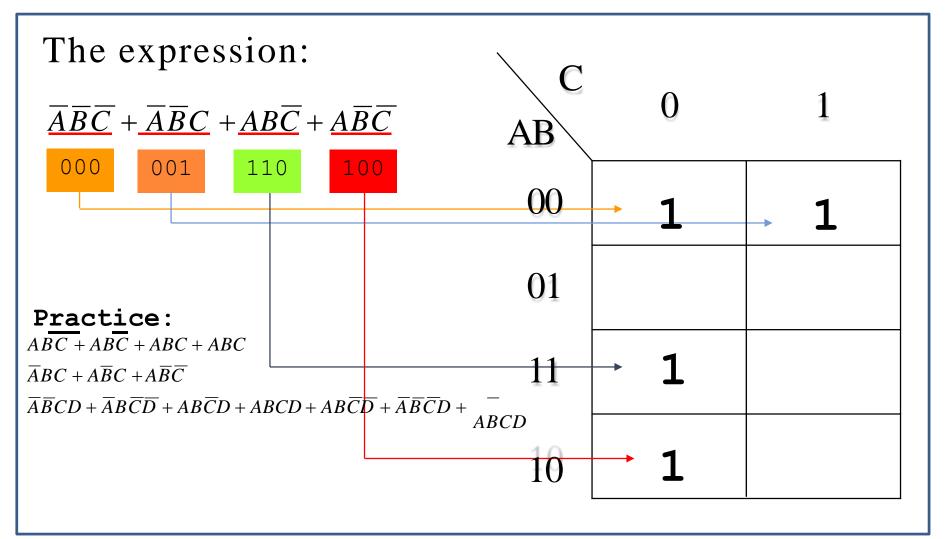
K-map SOP Minimization

- The K-Map is used for simplifying Boolean expressions to their minimal form.
- A minimized SOP expression contains the fewest possible terms with fewest possible variables per term.
- Generally, a minimum SOP expression can be implemented with fewer logic gates than a standard expression.

MAPPING A STANDARD SOP EXPRESSION



MAPPING A STANDARD SOP EXPRESSION (FULL EXAMPLE)



MAPPING A NONSTANDARD SOP EXPRESSION

- A Boolean expression must be in standard form before you use a K-map.
 - □ If one is not in standard form, it must be converted.
- You may use the procedure mentioned <u>earlier</u> or use numerical expansion.

K-MAP SIMPLIFICATION OF SOP EXPRESSIONS

- After an SOP expression has been mapped, we can do the process of *minimization*:
 - Grouping the 1s
 - Determining the minimum SOP expression from the map

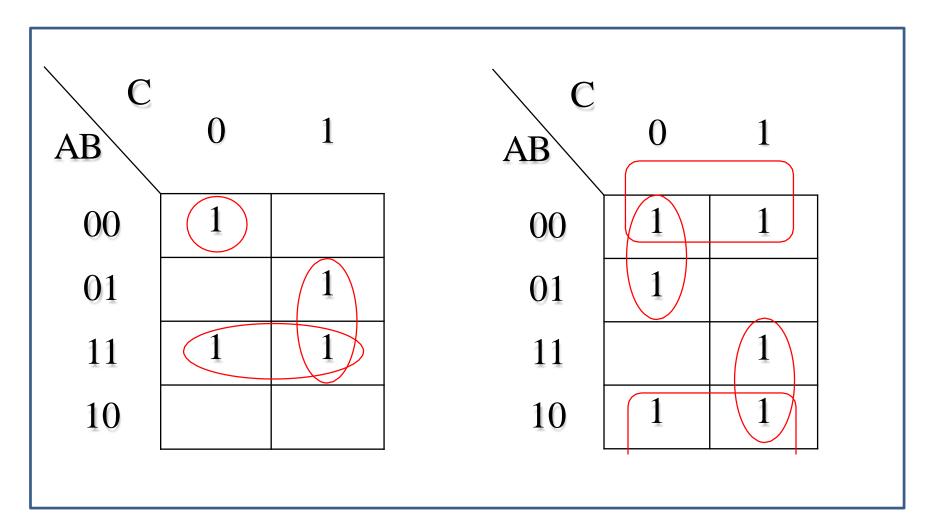
Grouping Of 1s

- You can group 1s on the K-map according to the following rules by enclosing those adjacent cells containing 1s.
- **The goal** is to maximize the size of the groups and to minimize the number of groups.

Grouping Of 1s (Rules)

- 1. A group must contain either 1,2,4,8,or 16 cells (depending on number of variables in the expression)
- 2. Each cell in a group must be adjacent to one or more cells in that same group, but all cells in the group do not have to be adjacent to each other.
- 3. Always include the largest possible number of 1s in a group in accordance with rule 1.
- 4. Each 1 on the map must be included in at least one group. The 1s already in a group can be included in another group as long as the overlapping groups include noncommon 1s.

Grouping The 1s (Example)



Grouping Of 1s (Example)

