Matrix of a Linear Transformation

PATNA WOMEN'S COLLEGE Patna University

3rd Cycle NAAC Accredited at A grade with CGPA $3.58 / 4$
College with Potential for Excellence" (CPE) status accorded by UGC

Dr.(Mrs.) Seema Mishra

Assistant Professor
Department of Mathematics
Patna Women's College, Patna University,
Patna-800001

OUTLINE

Dr. Seema
Mishra

The matrix of a linear transformation

1 THE MATRIX OF A LINEAR TRANSFORMATION

THE MATRIX OF A LINEAR TRANSFORMATION I

Whenever a linear transformation τ arises geometrically or described in words, we usually want a "formula" for $T(x)$. In this section, we discuss the fact that every linear transfrmation from \mathbb{R}^{n} to \mathbb{R}^{m} is actually a matrix transformation $x \mapsto A x$ and that important properties of T are intimately related to properties of A. The key to finding A is to observe that T is completely determined by what it does to the columns of the $n \times n$ matrix I_{n}.

THE MATRIX OF A LINEAR TRANSFORMATION II

Dr. Seema Mishra

The matrix of a linear transformation

EXAMPLE
The columns of $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ are $e_{1}=(1,0)$ and $e_{2}=(0,1)$. Suppose that T is a linear
transformation from \mathbb{R}^{2} to \mathbb{R}^{3} such that $T\left(e_{1}\right)=(5,1,7)$ and $T\left(e_{2}\right)=(3,8,0)$. Then we write $x \in \mathbb{R}^{2}$ in the following form:

$$
\begin{equation*}
x=\left(x_{1}, x_{2}\right)=x_{1}(1,0)+x_{2}(0,1)=x_{1} e_{1}+x_{2} e_{2} \tag{1}
\end{equation*}
$$

Since T is a linear transformation,

$$
\begin{align*}
T(x) & =x_{1} T\left(e_{1}\right)+x_{2} T\left(e_{2}\right) \\
& =x_{1}(5,1,7)+x_{2}(3,8,0) \\
& =\left(5 x_{1}+3 x_{2}, x_{1}+8 x_{2}, 7 x_{1}\right) \tag{2}
\end{align*}
$$

The steps from (1) to (2) explains why knowledge of $T\left(e_{1}\right)$ and $T\left(e_{2}\right)$ is sufficient to determine $T(x)$ fo any x. We can also write

$$
T(x)=\left[T\left(e_{1}\right) T\left(e_{2}\right)\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=A x
$$

THE MATRIX OF A LINEAR TRANSFORMATION III

Dr. Seema
Mishra

The matrix of a linear transformation

THEOREM
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. then there exists a unique matrix A such that

$$
T(x)=A x, \text { for all } x \in \mathbb{R}^{n} .
$$

In fact, A is $m \times n$ whose $j^{\text {th }}$ column is $T\left(e_{j}\right)$ (in column form), where e_{j} is the $j^{\text {th }}$ column of identity matrix in \mathbb{R}^{n}, i.e.,

$$
\begin{equation*}
A=\left[T\left(e_{1}\right), \quad T\left(e_{2}\right) \ldots T\left(e_{n}\right)\right] . \tag{3}
\end{equation*}
$$

Proof

THE MATRIX OF A LINEAR TRANSFORMATION IV

Dr. Seema Mishra

The matrix of a linear transformation

Write $x \in \mathbb{R}^{n}$ in the following form:

$$
\begin{aligned}
x=I_{n} x= & =\left[\begin{array}{lll}
e_{1} & e_{2} \ldots & e_{n}
\end{array}\right] x \\
& =x_{1} e_{1}+\ldots+x_{n} e_{n}
\end{aligned}
$$

and by the linearity of T to compute

$$
\begin{aligned}
T(x) & =T\left(x_{1} e_{1}+\ldots+x_{n} e_{n}\right) \\
& =x_{1} T\left(e_{1}\right)+\ldots+x_{n} T\left(e_{n}\right) \\
& =\left[T\left(e_{1}\right) T\left(e_{2}\right) \ldots T\left(e_{n}\right)\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdot \\
\cdot \\
\dot{x}_{n}
\end{array}\right]=A x
\end{aligned}
$$

Note

The matrix A in (3) is called the standard matrix for the linear transformation for the linear transformation T.

Dr. Seema Mishra The matrix of a linear transformation

Operator Illustration Equations Standard Matrix

Reflection about the line $\gamma=x$

Dr. Seema Mishra

The matrix of a linear transformation

Reflection about the $x y-$ plane

$$
\begin{aligned}
& w_{1}=x \\
& w_{2}=y \\
& w_{3}=-z
\end{aligned}\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Reflection about the $x z$-plane

Reflection about the $\overline{y z}$ plane

$w_{1}=-x$
$w_{2}=y$
$w_{3}=$
$w_{2}$$\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Dr. Seema
Mishra

The matrix of a linear transformation

$$
\begin{array}{lll}
\text { Oithogonal projection on the } x-a x i s
\end{array} \quad \begin{array}{ll}
w_{1}=x \\
w_{2}=0
\end{array} \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Othogonal projection on the 1 -axis

$w_{1}=0$
$w_{2}=y$$\quad\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

Dr. Seema
Mishra

The matrix

 of a linear transformationOrthogonal projection on the $x y$-plane \quad| $w_{1}=x$ |
| :--- | :--- | :--- |
| $w_{2}=y$ |
| $w_{3}=0$ |\(\quad\left[\begin{array}{lll}1 \& 0 \& 0

0 \& 1 \& 0

0 \& 0 \& 0\end{array}\right]\)
Orthogonal projection on the $x z$-plane $\quad\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$

Orthogonal projection on the $y z$-plane

Dr. Seema Mishra

The matrix of a linear transformation

Rotation through an angle θ

$$
\begin{aligned}
& w_{1}=x \cos \theta-y \sin \theta \\
& w_{2}=x \sin \theta+y \cos \theta
\end{aligned}\left[\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

DEFINITION

A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be onto \mathbb{R}^{m} if each $b \in \mathbb{R}^{m}$ is image of at least one $x \in \mathbb{R}^{n}$.

Note

Note that T is onto \mathbb{R}^{m} when the range of T is all of the codomain \mathbb{R}^{m}. That is, T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if, for each b in the codomain \mathbb{R}^{m}, there exist at least one solution of $T(x)=b$. The mapping T is not onto when there is some $b \in \mathbb{R}^{m}$ for which the equation $T(x)=b$ has no solution.

DEFINITION

A mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is said to be one-to-one if each b in \mathbb{R}^{m} is the image of at most one x in \mathbb{R}^{n}.

Note

Note that T is one-to-one if, for each b in \mathbb{R}^{m}, the equation $T(x)=b$ has a unique solution or none at all. The mapping T is not one-to-one when some b in \mathbb{R}^{m} is the image of more than one vector in \mathbb{R}^{n}.

RECALL

1 Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statement of they are all false.

1 For each $b \in \mathbb{R}^{m}$, the equation $A x=b$ has a solution.
2 Each $b \in \mathbb{R}^{m}$ is a linear combination of the columns of A.
3 The columns of A span \mathbb{R}^{m}.
4 A has a pivot position in every row.
2 The columns of a matrix A are linearly independent if and only if the equation $A x=0$ has only the trivial solution.

Example

Let T be the linear transformation whose standard matrix is

$$
A=\left[\begin{array}{cccc}
1 & -4 & 8 & 1 \\
0 & 2 & -1 & 3 \\
0 & 0 & 0 & 5
\end{array}\right]
$$

Does T map \mathbb{R}^{4} onto \mathbb{R}^{3} ? Is T a one-to-one mapping?

Solution

Dr. Seema Mishra transformation

Since A happens to be in Echelon form, we can see at once that A has a pivot position in each row. Then by result (1) in Recall, for each b in \mathbb{R}^{3}, the equation $A x=b$ has a solution. In other words, the linear transformation T maps \mathbb{R}^{4} ontoo \mathbb{R}^{3}. However, since the equation $A x=b$ has a free variable(because there are four variables and only three basic variables), each b is the image of more than one x. That is, T is not one-to-one.

THEOREM

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then T is one-to-one if and only if the equation $T(x)=0$ has only the trivial solution.

Proof

Since T is linear, $T(0)=0$. If T is one-to-one, then the equation $T(x)=0$ has atmost one solution and hence only the trivial solution. If T is not one-to-one, then there is a b that is image of atleast two different vectors u and v in \mathbb{R}^{n}. Then $T(u)=b$ and $T(v)=b$. But then, since T is linear,

$$
T(u-v)=T(u)-T(v)=b-b=0
$$

The vector $u-v$ is not zero, since $u \neq v$. Hence the equation $T(x)=0$ has more than one solution. So, either the two condition in the theorem are both true of they both are false.

THEOREM

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation and let A be the standard matrix for T. Then:
$1 T$ maps \mathbb{R}^{n} onto \mathbb{R}^{m} if and only if the columns of A span \mathbb{R}^{m};
$2 T$ is one-to-one if and only if the columns of A are linearly independent.

Dr. Seema Mishra

The matrix of a linear transformation

PROOF

1 By result (1) of Recall, the columns of A span \mathbb{R}^{m} if and only if for each b the equation $A x=b$ has atleast one solution. This implies that the equation $T(x)=b$ has atleast one solution. This is true only if T maps \mathbb{R}^{n} onto \mathbb{R}^{m}.
2 The equation $T(x)=0$ and $A x=0$ are same except the notation. So by Theorem 6,T is one-to-one if and only if $A x=0$ has only the trivial solution. This happens if and only if the columns of A are linearly independent, by (2) of Recall.

Note

Statement (1) of Theorem 7 is equivalent to the statement " T maps \mathbb{R}^{n} onto \mathbb{R}^{m} if and only if every vector in \mathbb{R}^{m} is a linear combination of the columns of $A^{\prime \prime}$.

EXAMPLE

Let $T\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2}, 5 x_{1}+7 x_{2}, x_{1}+3 x_{2}\right)$. Show that T is one-to-one linear transformation. Does T $\operatorname{map} \mathbb{R}^{2}$ onto \mathbb{R}^{3} ?

Solution

Dr. Seema Mishra of a linear transformation

The standard matrix A for the linear transformation T is(can be obtained by the method described before) the following:

$$
A=\left[\begin{array}{ll}
3 & 1 \\
5 & 7 \\
1 & 3
\end{array}\right]
$$

The columns of A are linearly independent because they are not multiples. By theorem 7(2), T is one-to-one. To decide if T is onto \mathbb{R}^{3}, examine the span of columns of A. Since A is 3×2, the columns of A span \mathbb{R}^{3} if and only if A has 3 pivot positions, by Result (1) in Recall. This is impossible, since A has only 2 columns. So the columns of A do not span \mathbb{R}^{3}, and thus the associated linear transformation is not onto \mathbb{R}^{3}.

