
Ms. Sushmita Chakraborty

Assistant Professor, Deptt. of MCA

Patna Women’s College

Bailey Road
1

MCA CS1T03 : Unit 1

Chapter 1 : Introduction to Software Engineering

What is Software?

2

• Some Professional defines software as a pattern

that is readable and executable by machine.

• Readable means that there is an understandable

material expression for the software that is readable

by the computer.

• Executable means that the software is distinguished

from data and noise.

What is Software?

3

The product that software professionals build and

then support over the long term.

Software encompasses: (1) instructions (computer

programs) that when executed provide desired

features, function, and performance; (2) data

structures that enable the programs to adequately

store and manipulate information and (3)

documentation that describes the operation and

use of the programs.

Why Software is Important?

• The economies of ALL developed nations are

dependent on software.

• More and more systems are software controlled

(transportation, medical, telecommunications,

military, industrial, entertainment,)

• Software engineering is concerned with theories,

methods and tools for professional software

development.

4

Why Software is Important?

• Software does not wear out but deteriorates. Unlike

hardware, Software does not get destroyed by usage

or aging, but gets outdated.

• Any alteration in environment results in the failure

of Software . Therefore alteration in the software is

needed.

• Software is not manufactured but developed and

customized.

5

Quality Attributes of Software

Software quality attributes can be measured on

a three- dimensional plot.

• Performance : Performance is a software

quality attributes and refers to the timeliness

aspect of how software system behave.

• Dependability : It states how much one can

depend upon the software, to what extent one

can trust the software and what it is intended to

do when it is needed. 6

Quality Attributes of Software

Software quality attributes can be measured on

a three- dimensional plot.

• Security : The ability of the system to protect

itself against deliberate or accidental

intrusion.

7

Quality Attributes of Software

Safety

and

Maintainability

Usabilty

and

availability

Robustness

Correctness

and

Testability

Dependability

8

Quality Attributes of Software

Storage

memory

demand

System

latency

System

throughput

Runtime

memory

consumption

Performance

9

Quality Attributes of Software

Authntication
Safe to

Environment

Confidentiality
System

Integrity

Security
External Security

Pertaining to external

interface

Internal Security

Pertaining to internal-

module interface

10

Introduction to Software Engineering

• The 1968 NATO Software Engineering Conference is

regarded as the origin of Software Engineering – till then

regarded as the design of computer programs and

software–intensive systems for a performance–efficient,

high-quality, and economical framework.

• This conference popularized the term software

engineering that encompasses knowledge, tools, and

methods for defining software requirements and

performing software design, construction, testing , and

maintenance tasks.

11

Introduction to Software Engineering

12

The IEEE definition:

Software Engineering: (1) The application of a systematic,

disciplined, quantifiable approach to the development,

operation, and maintenance of software; that is, the

application of engineering to software. (2) The study of

approaches as in (1).

The seminal definition:

[Software engineering is] the establishment and use of

sound engineering principles in order to obtain

economically software that is reliable and works

efficiently on real machines.

Software Engineering Definition

13

Activities in Software Engineering

Software

Process

Software

process research

and

enhancement

Software

process

management

and control

Software

product

management

and control

Software Engineering

Software

Product

Software

Process

Software

Analysis

Software

writing

Software

Operation

Software

maintenance

14

Activities in Software Engineering
The following are the common teams who are

involved in software development or in software

engineering organization.

• User

• Stakeholders

• Sales & Marketing Personnel

• Mangers

• Domain Experts

• Analysts
15

Activities in Software Engineering

• Software Designer / Architects

• Technology Experts

• Programmers

• Testers and Debuggers

• User Support Staff

16

Software Paradigm

• Software paradigms refers to the methods and

steps, which are taken while designing the

software.

• There are many methods proposed and are in work

today, but we need to see where in the software

engineering these paradigms stand. These can be

combined into various categories, though each of

them is contained in one another:
17

Software Paradigm

18

Software Paradigm

• Programming paradigm is a subset of

Software design paradigm which is further a subset

of Software development paradigm.

• Software Development Paradigm is known as

software engineering paradigms where all the

engineering concepts pertaining to the

development of software are applied.

19

Software Paradigm
It consists of –

• Requirement gathering

• Software design

• Programming

Software Design Paradigm is a part of Software

Development and includes –

• Design

• Maintenance

• Programming

20

Characteristics of Software

A software product can be judged by what it offers

and how well it can be used. Well-engineered and

crafted software is expected to have the following

characteristics:

• Operational : This tells us how well software works

in operations. It can be measured on: Budget,

Usability, Efficiency, Correctness, Functionality,

Dependability, Security, Safety, Transitional,

Maintenance

21

Characteristics of Software

• Transitional : This aspect is important when the

software is moved from one platform to another :

Portability, Interoperability, Reusability,

Adaptability

• Maintenance : This aspect briefs about how well a

software has the capabilities to maintain itself in

the ever-changing environment: Modularity,

Maintainability, Flexibility,Scalability

22

Characteristics of Software

So we conclude that Software Engineering is

a branch of computer science, which uses

well-defined engineering concepts required

to produce efficient, durable, scalable, in-

budget and on-time software products.

23

Software Applications

• System software: such as compilers, editors, file
management utilities

• Application software: stand-alone programs for specific
needs.

• Engineering/scientific software: Characterized by “number
crunching”algorithms. such as automotive stress analysis,
molecular biology, orbital dynamics etc

• Embedded software resides within a product or system.
(key pad control of a microwave oven, digital function of
dashboard display in a car)

24

Software Applications

• Product-line software focus on a limited marketplace to
address mass consumer market. (word processing, graphics,
database management)

• WebApps (Web applications) network centric software.
As web 2.0 emerges, more sophisticated computing
environments is supported integrated with remote database
and business applications.

• AI software uses non-numerical algorithm to solve complex
problem. Robotics, expert system, pattern recognition game
playing

25

Need for Software Engineering

• The need of software engineering arises

because of higher rate of change in user

requirements and environment on which the

software is working.

• More and more, individuals and society rely on

advanced software systems. We need to be able

to produce reliable and trustworthy systems

economically and quickly.

26

Need for Software Engineering

• It is usually cheaper, in the long run, to use

software engineering methods and techniques

for software systems rather than just write the

programs as if it was a personal programming

project. For most types of system, the majority

of costs are the costs of changing the software

after it has gone into use.

27

Need for Software Engineering

Dynamic Nature- The always growing and adapting

nature of software hugely depends upon the

environment in Programming Paradigm This paradigm

is related closely to programming aspect of software

development. This includes –

• Coding

• Testing

• Integration which user works. If the nature of software

is always changing, new enhancements need to be done

in the existing one. This is where software engineering

plays a good role.

28

Legacy Software

29

29

Legacy Software

30

30

Software Myths

Erroneous beliefs about software and the process

that is used to build it.

•Affect managers, customers (and other non-

technical stakeholders) and practitioners

•Are believable because they often have elements

of truth, but …

•Invariably lead to bad decisions, therefore …

•Insist on reality as you navigate your way

through software engineering

31

Software Myths

Three types of Myths are:

- Management myth

- Customer myth

- Practitioner's myth

32

Software Myths Examples
• Myth 1: Once we write the program and get it to work,

our job is done.

• Reality: the sooner you begin writing code, the longer

it will take you to get done. 60% to 80% of all efforts

are spent after software is delivered to the customer for

the first time.

• Myth 2: Until I get the program running, I have no way

of assessing its quality.

• Reality: technical review are a quality filter that can be

used to find certain classes of software defects from the

inception of a project.
33

Software Myths Examples

• Myth 3: software engineering will make us create

voluminous and unnecessary documentation and will

invariably slow us down.

• Reality: it is not about creating documents. It is about

creating a quality product. Better quality leads to a

reduced rework. Reduced work results in faster

delivery times.

• Many people recognize the fallacy of the myths.

Regrettably, habitual attitudes and methods

foster poor management and technical practices,

even when reality dictates a better approach.

34

34

Software Engineering – A Layered Technology

35

35

Software Engineering – A Layered Technology

36

36

The Software Product

37

. . . . Software Products

38

Difference between

generic and customized software

39

generic and customized software

45

• Generic products:

• They are marketed and sold to any customer who wishes to buy

them.

Examples : Graphics Software- Photoshop, Office

automation- Ms-Office; Accounting Software – Tally, Design

software – Auto CAD , etc

• Customized products :

• Software that is commissioned by a specific customer to meet

their own needs.

Examples : banking System, air traffic control software,

railway ticket, reservation systems, Hospital management

systems etc.

Software Product Attributes

41

. . . product attributes

42

. . . product attributes

43

Unit 1 : Chapter : 2

Software Engineering Process and Models

44

Software Process
• A process is a collection of activities, actions and

tasks that are performed when some work product is

to be created. It is not a rigid prescription for how

to build computer software. Rather, it is an adaptable

approach that enables the people doing the work to

pick and choose the appropriate set of work

actions and tasks.

• Purpose of process is to deliver software in a timely

manner and with sufficient quality to satisfy those

who have sponsored its creation and those who will

use it.
45

Components of a Software Process

Software Process

Process

Management

Product

Engineering

Process

Development

Process Project

Management

Process

Configuration

Control Process

46

A Generic View of Process

47

A Process Framework

48

A Process Framework

49

Five Activities of a Generic Process framework

• Communication: communicate with customer to
understand objectives and gather requirements

• Planning: creates a “map” defines the work by
describing the tasks, risks and resources, work
products and work schedule.

• Modeling: Create a “sketch”, what it looks like
architecturally, how the constituent parts fit together
and other characteristics.

• Construction: code generation and the testing.

• Deployment: Delivered to the customer who
evaluates the products and provides feedback based
on the evaluation. 50

Five Activities of a Generic Process framework

• These five framework activities can be used to
all software development regardless of the
application domain, size of the project,
complexity of the efforts etc, though the details
will be different in each case.

• For many software projects, these framework
activities are applied iteratively as a project
progresses. Each iteration produces a software
increment that provides a subset of overall
software features and functionality.

51

Umbrella Activities
Complement the five process framework activities and
help team manage and control progress, quality, change,
and risk.

• Software project tracking and control: assess progress
against the plan and take actions to maintain the
schedule.

• Risk management: assesses risks that may affect the
outcome and quality.

• Software quality assurance: defines and conduct
activities to ensure quality.

• Technical reviews: assesses work products to uncover
and remove errors before going to the next activity.

52

Umbrella Activities
• Measurement: define and collects process,

project, and product measures to ensure
stakeholder’s needs are met.

• Software configuration management: manage
the effects of change throughout the software
process.

• Reusability management: defines criteria for
work product reuse and establishes mechanism
to achieve reusable components.

• Work product preparation and production:
create work products such as models,
documents, logs, forms and lists.

53

Capability Maturity Model Integration

54

Capability Maturity Model Integration

55

(CMMI)

56

Capability Maturity Model Integration

(CMMI)

57

(CMMI)
INCOMPLETE : Process is adhoc. Objective and goal of process

areas are not known

PERFORMED : Goal, Objective, work tasks, work products and

other activities of software process are came out.

MANAGED : Activities are monitored, reviewed, evaluated and

controlled

DEFINED : Activities are standardized, integrated and documented

QUANTITATIVELY MANAGED : Metrics are indicators are

available to measure the process and quality

OPTIMIZED :

- Continuous process improvement based on quantitative feed

back from the user

- Use of innovative ideas and techniques, statistical quality control

and other methods for process improvement
58

Adapting a Process Model

The process should be agile and adaptable to problems. Process
adopted for one project might be significantly different than a
process adopted from another project. (to the problem, the
project, the team, organizational culture). Among the differences
are:

•the overall flow of activities, actions, and tasks and the
interdependencies among them

•the degree to which actions and tasks are defined within each
framework activity

•the degree to which work products are identified and required

•the manner which quality assurance activities are applied

•the manner in which project tracking and control activities are
applied

59

Adapting a Process Model

• the overall degree of detail and rigor with which the
process is described

• the degree to which the customer and other stakeholders
are involved with the project

• the level of autonomy given to the software team

• the degree to which team organization and roles are
prescribed

60

Prescriptive and Agile Process Models

•The prescriptive process models stress detailed
definition, identification, and application of process
activates and tasks. Intent is to improve system quality,
make projects more manageable, make delivery dates
and costs more predictable, and guide teams of software
engineers as they perform the work required to build a
system.

•Unfortunately, there have been times when these
objectives were not achieved. If prescriptive models are
applied dogmatically and without adaptation, they can
increase the level of bureaucracy.

61

•Agile process models emphasize project
“agility” and follow a set of principles
that lead to a more informal approach to
software process. It emphasizes
maneuverability and adaptability. It is
particularly useful when Web applications
are engineered.

Prescriptive and Agile Process Models

62

63

