Two Year M.Sc. Programme in Biotechnology

PROGRAM OUTCOMES (PO)

Upon completion of the Post Graduate programme, the students will be able to achieve the following outcomes:

- **PO1: Profound Professional Knowledge:** Obtain proficiency to maneuver in diverse context of the advance subject knowledge.
- **PO2: Critical Thinking and Analysis:** Attain the analytical expertise to create, analyse, formulate, and solve challenging problems.
- **PO3:** Environment and sustainability: Understand the impact of the scientific solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO4:** Research and Innovation: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5:** Effective Communication: Demonstrate skills such as effective communication, decision making, problem and adapt ability to create technical writing.
- **PO6: Problem Solving:** Understand, interpret, explain, analyse and assess the tools, techniques, models and methodologies to solve problems.
- **PO7:** Employability: Demonstrate skills for doctoral, post-doctoral education, professional development and employability.
- **PO8:** Advance tools and techniques: Attain ability to work with advanced IT tools and techniques in their domain.
- **PO9:** Social Consciousness: Acquire awareness towards gender, environment, sustainability, human values and professional ethics and understand the difference between acting, responding and reacting to various social issues

PO10: Nation Building: Introspect and evolve into dynamic and creative individuals capable of socially productive, constructive actions that positively impact our Nation and the World at large

PROGRAM SPECIFIC OUTCOMES (PSO)

Upon completion of the M.Sc. in Biotechnology program, the students will attain the ability to:

- **PSO1:** Acquire competencies in theoretical as well as experimental Biotechnology in order to enhance knowledge in the applied aspect of the subject related to the welfare/development of society.
- **PSO2:** Apply written and oral communication skills to communicate effectively in healthcare, industry, academia and research.
- **PSO3:** Develop aptitude for research in bio-science at molecular level and its interdisciplinary areas.
- **PSO4:** Compete for employment in academia, agriculture, horticulture and need based industry with the biotechnological skills.
- **PSO5:** Produce entrepreneurs who can develop sustainable solutions in mushroom cultivation and small scale biofertilizer production.
- **PSO6:** Apply responsibilities to promote societal health and safety, upholding the trust given to the profession by the society and develop skills, attitude and values required for self-directed, lifelong learning and professional development.
- **PSO7:** Acquire awareness towards gender, environment, sustainability, human values, and professional ethics and understand the difference between acting, responding, reacting to various social issues.

COURSE OUTCOME (CO)

MBT CC101: Cell & Molecular Biology and Genetics (5 Credits)

Course Outcomes (CO):

After completion of the course, the students will be able to:

- **CO1:** Describe the concept of cell organization, the concept of biomembrane system, and transport across different cells.
- **CO2:** Describe the cell cycle and its control mechanism. To understand the basics of cancer oncogenes and suppressor genes.
- **CO3:** Understand the concept of DNA replication in Prokaryotes and Eukaryotes, DNA damage and repair mechanism; Transcription in Prokaryotes and Eukaryotes; Regulatory elements and DNA binding domains of transcription apparatus; Processing of primary transcript and RNA editing in eukaryotes.
- **CO4:** Describe the mechanism of Gene Regulation in Prokaryotes and Eukaryotes.
- **CO5:** Describe the Antisense technology and its application. Mutation and its application and extra-chromosomal inheritance.

MBT CC102: Microbiology (5 Credits)

Course Outcomes (CO):

- **CO1:** Describe the history and scope of microbiology, Sterilization and its type, preservation methods, staining methods, microbial growth kinetics and classification of microbes.
- **CO2:** Describe diversity of bacteria, Archaea and detailed structure of bacteria.
- **CO3:** Describe general features of Fungi, protozoa, slime mold, viruses, viroids & prions.
- **CO4:** Describe host-pathogen relationship and different microbial diseases and its causative agent, and its pathogenesis.

CO5: Describe types of antibiotics and its mode of action, nitrogen metabolism and symbiotic nitrogen fixation mechanism.

MBT CC103: Biomolecules and Basic Enzymology (5 Credits)

Course Outcomes (CO):

After completion of the course, the students will be able to:

- **CO1:** Understand the concept of pH, pK, acid bases, and carbohydrates structure and function
- **CO2:** Develop knowledge of Amino acids Structure, function and classification and types of protein structure
- **CO3:** Describe the classification, structure, properties and function of lipids and nucleic acid.
- **CO4:** Understand Ribozyme technology and its application, Immobilization of enzymes, methods and its industrial application.
- **CO5:** Develop knowledge of Enzyme kinetics, allosteric regulations.

MBT CC104: Practical (Based on MBT CC101, 102, 103) (5 credits)

Course Outcomes (CO):

- **CO1:** Understand the different stages of the cell cycle and working knowledge of cell counting by hemocytometer
- CO2: Hands-on understanding of work with microbial culture, media preparation, sterilization, staining techniques & identification of microbes by different biochemical tests
- **CO3:** Gain knowledge of the growth curve of bacteria and the effects of different parameters on its growth.
- **CO4:** Acquire knowledge of standard graph preparation by measuring optical density, working with protein, and its purification.

CO5: Hands-on experience with instruments such as a spectrophotometer, SDS PAGE gel electrophoresis, and column chromatography.

Ability Enhancement Compulsory Course (5 Credits Each)

MAECC101: Environmental Sustainability & Swachh Bharat Abhiyan Activities

Course Outcomes (CO):

After completion of the course, the students will be able to:

- **CO1:** Understand the sustainable development and ecosystem and discuss the environmental pollution, climate change, ozone layer depletion, threats of encroachment on habit and habitat of flora and fauna.
- **CO2:** Understand biodiversity and its conservation, three 'R', environmental education, awareness program and ecological economics.
- **CO3:** Understand the importance of swachhata, sanitation and hygiene. Describe the Gandhiyan approach towards social and environmental moral values.
- **CO4:** Study the case of sanitation and the effect of cleanliness.

SEMESTER - II

Core Courses (5 Credit Each)

MBT CC205: Biofertilizer and Mushroom Technology (5 credits)

Course Outcomes (CO):

- **CO1:** Understand N2 fixation, phosphate solubilization, & mycorrhizal interaction in maintaining soil fertility.
- **CO2:** Understand mass cultivation of cyanobacteria and its application in the rice field.

CO3: Develop skills on potent microorganisms to be used as biopesticides.

CO4: Understand Mushroom types and their cultivation mechanism.

CO5: Develop depth knowledge of Bioinsecticides.

MBT CC206: Biophysics and Instrumentation (5 Credits)

Course Outcomes (CO):

After completion of the course, the students will be able to:

CO1: Analyze the different biomolecules through different spectroscopic techniques.

CO2: Understand the instruments and its techniques to study microbes and its biomolecules.

CO3: Develop depth knowledge of observing microbial world through microscopy technique.

CO4: Analyze the biomolecule separation techniques: chromatography, gel electrophoresis.

CO5: Understand column packing in any form of column chromatography.

MBT CC207: Biology of Immune System (5 Credits)

Course Outcomes (CO):

After completion of the course, the students will be able to:

CO1: Gain Knowledge of cells and organ system of the immune system.

CO2. Understand the Immune system and its response to pathogenic microorganisms.

CO3: Develop an Understanding of various immunological disorders.

CO4: Apply Knowledge of various immunological techniques.

CO5: Understand the effect of different foreign molecules on the immune system and its defense mechanism.

MBT CC208: Bioprocess Technology (5 credits)

Course Outcomes (CO):

After completion of the course, the students will be able to:

- **CO1:** Understand the Methods of isolation of microorganisms from different sources.
- **CO2:** Analyse the Methods of preservation of industrially important microbes, industrial fermentation media, and growth kinetics of industrially important microorganisms.
- **CO3:** Apply Knowledge of different types of the fermentation process and bioreactors.
- **CO4:** Demonstrate Knowledge of downstream processes and enzyme mobilization techniques.
- **CO5:** Understand the process technology for the production of industrially important products.

MBT CC209: Practical (Based on MBT CC201, 202, 203, 204) (5 Credits)

Course Outcomes (CO):

- **CO1:** Learn how to produce biofertilizers, and mushroom spawn for its commercial production.
- **CO2:** Understand the method of quantification of DNA concentration and its purity by spectrophotometry methods.
- CO3: Learn how to perform WBC count in blood samples and learn other immunological processes like phagocytosis
- CO4: Understand the basic concepts of Immunological techniques.
- **CO5:** Understand the concept of production and estimation of various industrially important Enzymes, antibiotics, ethanol, and acids.

MBT SEC201: Skill Enhancement Courses (One selected from the basket) (5 Credits) Project

Course Outcomes (CO):

After completion of the course, the students will be able to:

Bio-fertilizer production.

CO1: Understand the isolation & cultivation of biofertilizers and their types.

CO2: Learn the mass and application of different biofertilizers.

CO3: Gain knowledge of recycling biodegradable wastes.

CO4: Develop entrepreneurial skills.

CO5: Learn the pilot scale study of biofertilizer application and benefit nearby farmers.

Mushroom Culture.

CO1: Understand and learn mushroom cultivation and technique.

CO2: Learn spawn preparation for mushroom cultivation.

CO3: Learn entrepreneurship skills in Mushroom cultivation.

CO4: Learn the nutritional benefits of mushrooms through experiments.

CO5: Study & understand the causative agents of diseases in mushrooms through experiments.

<u>SEMESTER – III</u>

Core Courses (5 Credit Each)

MBT CC310: Biostatistics and Bioinformatics (5 Credits)

Course Outcomes (CO):

After completion of the course, the students will be able to:

CO1: Develop basic knowledge of mathematics as applied to biological phenomenon.

CO2: Understand the basic concepts of statistics and their importance.

- **CO3:** Apply Various statistical techniques to prove the significance of the biological experiment.
- **CO4:** Understand the Biological databases and their tools to use them for bioinformatic studies.
- **CO5:** Gain the ability to apply the sequence analysis knowledge to understand the phylogenetic distance between different organisms.

MBTCC 311: Recombinant DNA Technology (5 Credits)

Course Outcomes (CO):

After completion of the course, the students will be able to:

- **CO1:** Analyze the Genetic engineering tools for the manipulation of DNA.
- **CO2:** Understand the concept of cDNA libraries, rDNA, and methods of DNA transfer in a suitable host.
- **CO3:** Develop knowledge of advanced Recombinant DNA techniques like DNA isolation, PCR, blotting, DNA sequencing, and gel electrophoresis.
- **CO4:** Perform Demonstration of Bacterial Transformation and calculation of transformation efficiency.
- **CO5:** Understand the Concept of RDT & its application in the production of therapeutic products.

MBT CC312: Plant and Animal Biotechnology (5 Credits)

Course Outcomes (CO):

- **CO1:** Learn the regeneration ability of plant cells through various culture techniques.
- **CO2:** Understand the application of tissue culture methods for the generation of virus-free plants, haploid plants
- **CO3:** Understand the importance of micropropagation techniques to obtain hybrids through protoplast fusion, and somatic hybridization.

- **CO4:** Acquire the concepts of transgenic plants and commercial application of plant tissue culture for the propagation of transgenics.
- **CO5:** Acquire the concept of Animal cell culture and its application.

MBT CC313: Environmental Biotechnology (5 credits)

Course Outcomes (CO):

After completion of the course, the students will be able to:

- **CO1:** Analyze the idea of nutrient cycling with reference to C- cycle, N- cycle and Sulfur.
- **CO2:** Understand the basic idea of environmental problems and Biomonitoring of water pollution.
- **CO3:** Understand the Role of microorganisms in the degradation of solid/liquid wastes.
- **CO4:** Develop a better understanding of bioremediation by exploiting the degradation abilities of microorganisms.
- CO5: Develop a better understanding of Biopesticides and Microbial role in mining

MBT CC314: Practical (Based on MBT CC310, 311, 312, 313) (5 Credits)

Course Outcomes (CO):

- **CO1:** Learn how to interpret & analyze mean, mode, median, standard error, and standard deviation manually and with software programs
- **CO2:** Acquire the working knowledge of software and online databases for retrieving sequences, 3D structures, and metabolic pathways.
- **CO3:** Perform the DNA, Plasmid isolation, and its visualization by agarose gel electrophoresis.
- **CO4:** Gain knowledge of advanced molecular biology techniques like PCR, restriction

digestion, ligation, and transformation.

CO5: Gain the ability to apply knowledge to establish organ culture, protoplast culture, and haploid production, and also use microbiological techniques to isolate and study indicator organisms.

<u>SEMESTER - IV</u>

MBT DSE/EC 401: Dissertation and Viva-voce (5 Credits)

Course Outcomes (CO):

After completion of the course, the students will be able to:

CO1: Apply an Experimental approach to various scientific phenomena.

CO2: Enhance knowledge on research aptitude and designing experiments independently.

CO3: Develop knowledge on Augmenting reading habits of research/review articles.

CO4: Apply knowledge of project work within a bound time period.

CO5: Gain abilities to analyze the experimental results to compile Project reports.

MBT DSE/EC 402: Literature Review & Presentation (5 Credits)

CO1: To be able to learn dissertation /thesis writing.

CO2: To be able to prepare a manuscript for research publication

CO3: To be able to develop the skill of presentation.

CO4: Understand and able to perform a review of the literature of research papers.

CO5: Understand research methodology concepts.

Semester IV

MBT DSE401 : Microbial Biotechnology (5 credits)

COURSE OUTCOME

After completion of the course, the students will be able to:

CO1: Understand the concept of Microbial biotechnology

CO2: Develop the concept of industrial production of organic acids and amino acids.

CO3: Develop knowledge of commercial production of enzymes

CO4: Develop knowledge on commercial production of fermented beverages and dairy products

CO5: To understand the concept of the production of single-cell protein and Mushroom cultivation.

MBT DSE402: Practical based on MBT DSE 401 (Microbial Biotechnology)

CO1: The student will be able to understand microbial diversity, physiology, and nutrition through experiments.

CO2: Understanding advanced microbiology using modern techniques.

CO3: To culture and identify agriculturally important bacteria and know how to preserve different bacteria and know how to preserve them.

CO4: Acquire knowledge of fermentation technology at the pilot scale level.

CO5: Understand various products of industrial importance.

CO6: Facilitates understanding of the importance of microbial technology in the industry.

Semester IV

MBT DSE401: Advanced Plant and Agriculture Biotechnology (5 credits)

COURSE OUTCOME

After completion of the course, the students will be able to:

CO1: Understand the concept of biotechnology for crop improvement

CO2: Develop the concept of protoplast technology

CO3: Understand the application of genetic engineering in crop improvement

CO4: Understand the concept of metabolic engineering

CO5: Understand the application of plant tissue culture as a source of medicine

MBT DSE402: Practical based on MBT DSE 401 (Advanced Plant and Agriculture Biotechnology (5 credits)

CO1: Understanding the aspects of in vitro regeneration and applications related to crop improvement and plant germplasm conservation.

CO2: Critically understanding the advantages of in vitro plant cell & tissue cultures and associated techniques for enhanced production of secondary metabolites.

CO3: Understanding the principles and techniques of plant transgenic technology.

CO4: Critically understanding the applications & limitations of plant transgenic technology in developing crops that are biotic & abiotic stress tolerant.

CO5: Comprehend basic concepts of establishing animal cell cultures.

Semester IV

MBT DSE401 : Food Biotechnology (5 credits)

COURSE OUTCOME

After completion of the course, the students will be able to:

- **CO 1:** Understand the fundamental aspects of food and nutrition
- **CO 2:** Critically understand the principles, and techniques of food processing
- CO 3: Understand the scope, technology, and importance of functional foods
- CO 4: Critically understand the importance of evaluation of food quality and food safety management
- **CO 5:** Understand the fermented foods and their spoilage mechanism

MBT DSE402: Practical based on MBT DSE 401 (Food Biotechnology (5 credits)

- **CO1:** Understanding the fundamental aspects of food and nutrition through experiments.
- **CO2:** Critically understanding the principles, and techniques of food processing through experiments.
- **CO3:** Understanding and analyzing various microorganisms involved in food spoilage.
- **CO4:** Learn evaluation of food quality.
- **CO5:** Understand the concept of nutraceuticals and therapeutics obtained from food sources.